skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, David A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prepare and analyze Rydberg states with orbital quantum numbers 6 using three-optical-photon electromagnetically induced transparency (EIT) and radio frequency (rf) dressing, and employ the high- states in electric-field sensing. Rubidium-85 atoms in a room-temperature vapor cell are first promoted into the 25 F 5 / 2 state via Rydberg-EIT with three infrared laser beams. Two rf dressing fields then (near-)resonantly couple the 25 F ,   25 H ( = 5 ) , and 25 I ( = 6 ) Rydberg states. The dependence of the rf-dressed Rydberg-state level structure on rf powers, rf and laser frequencies is characterized using EIT. Furthermore, we discuss the principles of dc-electric-field sensing using high- Rydberg states and experimentally demonstrate the method using test electric fields of 50 V/m induced via photo-illumination of the vapor-cell wall. We measure the highly nonlinear dependence of the dc-electric-field strength on the power of the photo-illumination laser. Numerical calculations, which reproduce our experimental observations well, elucidate the underlying physics. Our paper is relevant to high-precision spectroscopy of high- Rydberg states, Rydberg-atom-based electric-field sensing, and plasma electric-field diagnostics. Published by the American Physical Society2024 
    more » « less